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Abstract 

In this paper, we discuss some methodological problems arising from the use of corpus 
data for semantic verb classification. In particular, we present a computational 
framework to describe the distributional properties of Italian verbs using linguistic data 
automatically extracted from a large corpus. This information is used to build a 
distribution-based classification of a set of Italian verbs. Its small scale notwithstanding, 
this case study will provide evidence for the complex interplay between syntactic and 
semantic verb features. 

 

1. Classifying verb meanings* 

 

Understanding how verbs can be classified according to their common semantic features is a major 

goal shared by lexical semanticists, computational linguists and cognitive scientists alike. In fact, 

important generalizations about a verb behavior can be stated by referring to its semantic class. 

However, the term that best describes the current research on verb classes is “embarrassment of 

richness”. Several semantic verb classifications are already available for English: WordNet 

(Fellbaum 1998), VerbNet (Kipper-Schuler 2005), FrameNet (Fillmore et al. 2003), Levin Classes 

(Levin 1993), just to cite the most prominent examples. In Italian, we have the WordNet-style 

semantic classifications provided by Italian WordNet (Pianta et al. 2002) and ItalWordNet 

(Roventini et al. 2000) – each based on very different criteria - and the system of verb classes in 

Simple (Lenci et al. 2000), which is partly inspired to the Generative Lexicon (Pustejovsky 1995). 

As Čulo et al. (2008) point out, the main shortcoming of this situation is that existing semantic verb 

classifications may vary dramatically, not only with respect to their granularity (i.e. the number of 

semantic classes), but also with respect to the criteria with which the class system is organized, 

thereby often resulting in different, even orthogonal classifications of verbs.1 

One reason explaining this wide spectrum of variation is the fact that there are two main 

approaches to semantic verb classification, which we will refer to as ontology-based and 

distribution-based. Their main difference between them lies in the extent to which the distributional 

properties of verbs, i.e. the set of linguistic constructions and patterns they occur with, is adopted as 

the main criterion for class identification and class membership. In ontology-based classification 
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schemes, such a criterion is provided by the features of the extra-linguistic event or situation 

expressed by a verb meaning, rather than by its linguistic behavior. One clear example of this 

strategy is FrameNet. In fact, in FrameNet two verbs belong to the same semantic class to the extent 

they evoke the same frame, which is interpreted as a conceptual, schematic representation of a 

situation. For instance, the verbs eat and devour are grouped together because they evoke the same 

Ingestion Frame, corresponding to the schematic representation of a situation in which “an Ingestor 

consumes food or drink (Ingestibles), which entails putting the Ingestibles in the mouth for delivery 

to the digestive system”.2 Conversely, Levin Classes can be regarded as an example of distribution-

based classification, because the main membership criterion is the range of syntactic alternations 

licensed by a verb, as a key aspect of its syntagmatic, distributional properties. Therefore, since eat 

but not devour allows for object drop and conative constructions, in Levin Classes these verbs do 

not belong to the same class (Levin 1993: 213-215). As expected, most verb classifications tend to 

mix both criteria, thereby resulting in a huge spectrum of alternative possibilities depending on the 

salience of the ontological or distributional perspective in designing the semantic classes. 

 Since the ontology-based and the distribution-based criteria often produce orthogonal 

results, we need to find arguments that help to decide between them and to identify the correct 

methodology for semantic verb classification. Here, we will present four reasons supporting the 

claim that distributional data should be regarded as the main (possibly the only) constraint for 

semantic class design: 

1. distributional data de facto represent the most robust “observables” that are available to us to 

reconstruct verb meaning and to define the proper membership criteria of semantic equivalence 

classes. It is instead highly risky, and even sometimes unwarranted, to ground a classification 

scheme on our intuitions or presumptions about the unfolding of extra-linguistic situations and 

events. The hypothesis that members of the same semantic class refer to events sharing a certain 

number of features is surely appealing, but still it raises the problem of finding effective, 

independently motivated, objective criteria to establish the conceptual features relevant to estimate 

verb semantic similarities. At least part of the large degree in variability in semantic verb 

classifications is indeed due to the lack of such precise identity criteria of the relevant semantic 

features grounding the class choice. While distribution-based classifications are supported by 

linguistic data, a similar set of observable data is not available to date to support ontology-based 

generalizations; 

2. if we adopt a strict distributional perspective, verb semantic classes can be regarded as a kind of 

“latent variables” that are responsible for the distributions of the linguistic constructions we 

observe, and that we try to uncover by inspecting a significant amount of such empirical 
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distributions. In fact, wide empirical evidence supports the existence of a close correlation between 

semantic content and the way verbs are used in linguistic contexts and constructions. Levin’s 

proposal to ground verb semantic classifications on the verb diathesis alternations can indeed be 

regarded as a particular instance of the so-called Distributional Hypothesis (DH; Harris 1954, 

Miller & Charles 1991, Lenci 2008). According to the DH, at least certain aspects of the meaning of 

lexical expressions depend on their distributional properties in the linguistic contexts, and the 

degree of semantic similarity between two linguistic expressions A and B is a function of the 

similarity of the linguistic contexts in which A and B can appear. Therefore, it is at least possible to 

exploit such correlations to identify the groups of verbs that pattern alike, searching for the 

elements of meaning they share. Distributional data can be used as “a probe into the elements 

entering into the lexical representations of word meaning” (Levin 1993:14); 

3. the distribution-based approach seems to be more suitable if we are interested in classifying the 

meaning of verbs, qua linguistic objects. This fact is often overlooked in the linguistic and cognitive 

literature, in which an equation between meanings (as linguistic entities) and concepts (as mental -

not necessarily linguistic - representations of categories of extra-linguistic entities) is assumed. 

Here, we share the position defended by Vigliocco & Vinson (2007), who argue that such an 

equivalence can not be presupposed. Conceptual representations and semantic contents should 

rather be conceived as distinct, although deeply interconnected layers. Therefore, if we are 

interested in understanding the meaning of eat, and in identifying the verbs that are semantically 

similar to eat and are to be grouped together in the same class, we should rather consider how these 

verbs are used in linguistic constructions, rather than looking at the way eating events occur. Once 

we have properly designed our distribution-based verb semantic scheme, we can use it to study the 

way events are conceptually represented and expressed, thereby avoiding (or reducing) the risk of 

circularity, since the classification scheme would now be independent from any unwarranted 

assumption about conceptual structures; 

4. the current availability of large-scale corpora, tools for natural language processing and 

automatic text annotation, and statistical methods to extract linguistic data from texts allow us to 

turn the distributional method into a powerful and really effective criterion for exploring verb 

behavior. This does not entail that the distributional approach should only be corpus-based. The 

distribution-based method for verb semantic classification – at least as is conceived here – consists 

in assuming as the main criterion for verb semantic similarity and semantic class design the way 

verbs occur with linguistic constructions. Therefore, there is nothing in principle that prevents this 

method to be carried out by using corpus data along with carefully elicited speakers’ judgments 

about the distributional properties of lexical items. However, computational linguistics methods 
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applied to large-scale corpora provide us with an extremely rich array of evidence about lexical 

distributions, thereby making corpus data the preferred evidence for the distributional approach to 

verb class construction. Moreover, corpus derived statistics can be used to estimate the salience of 

verb constructions and to characterize verb properties as continuous variables. Thus, classifications 

can be sensitive not only to the constructions a verb can occur with, but also to their different 

degrees of statistical salience. 

 In this paper, we will discuss some methodological problems arising from the use of corpus 

data to bootstrap verb semantic classes. There are indeed two main issues concerning distribution-

based verb classifications: 1) which type of information can be extracted from corpora to 

characterize a verb distributional behavior? 2) how to use this information to partition verbs into 

semantic equivalence classes? State-of-the-art methods in computational linguistics provide 

answers to both questions, but, as we will show below, with different degrees of success. We will 

address the first issue by presenting a computational framework to describe the distributional 

properties of Italian verbs using linguistic data automatically extracted from a large corpus (Section 

2). Then, this information will be used to build a distribution-based classification of a set of Italian 

verbs (Section 3). Its small scale notwithstanding, this case study will show the need to model the 

complex interplay between syntactic and semantic verb features as a precondition to meet the 

challenge of verb classification. 

 

 

2. Profiling verb distributions 

 

The distributional profile of a verb v is defined here as an array of information extracted from a 

corpus to characterize the distributional properties of v. The automatic acquisition of verb 

information from corpora represents a longstanding research avenue in computational linguistics 

(Manning & Schütze 1999). Efforts have mostly focused on developing methods to extract verb 

subcategorization frames (Schulte im Walde 2009), to identify verb selectional preferences (Light 

& Greiff 2002), and (though to a less extent, given the challenging nature of the task) to 

automatically detect diathesis alternations (McCarthy 2001). In this section, we will describe the 

application of some of these computational methods to extract distributional profiles of Italian verbs 

from La Repubblica (Baroni et al. 2004), a corpus of ca. 326 million word tokens of newspaper 

texts. The corpus was first lemmatized and part-of-speech tagged, and then parsed with DeSR 

(Dependency Shift-Reduce), a state-of-the-art stochastic dependency parser (Attardi & Dell’Orletta 

2009). For the 3,873 most frequent verbs (min. freq. = 100; max. freq. = 830,903), their 
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distributional profile has been extracted from the parsed corpus. Each profile is in turn organized 

into a syntactic profile (Section 2.1) and a semantic profile (Section 2.2), respectively encoding the 

syntagmatic and semantic distributional properties of the verb.3 

 

2.1. Syntactic profiles 

 

The syntactic profile of a verb v a list of its subcategorization frames (SCFs), ordered by their 

statistical salience for the verb. Each SCF corresponds to a specific pattern of syntactic 

dependencies headed by v. It is formed by an unordered set of slots (e.g., subject + complement 

introduced by the preposition a + direct object) and is identified by a synthetic label (e.g., 

SUBJ#OBJ#COMP-A). Among the subcategorizing elements we also considered the reflexive pronoun 

si. The zero-argument construction (labeled with SUBJ#0) instead represents the case in which the 

verb appears with no dependencies, besides the (optional) subject. For instance, the sentences 

Gianni ha pianto “John cried” and Il vaso si è rotto “The vase si-broke” are respectively instances 

of the frames SUBJ#0 and SUBJ#SI#0. We did not formally encode in the SCFs the distinction 

between arguments and adjuncts. Therefore, the sentences Gianni abitava in città “John lived in 

town” and Gianni mangiava in città “John ate in town” are regarded as instances of the same SCF 

SUBJ#COMP-A. This is essentially due to the limitations of the DeSR parser, which abstracts away 

from this distinction (like most state-of-the-art parsers do). In fact, arguments and adjuncts are 

notoriously hard to discriminate, let alone for natural language processing systems. We leave to 

future research how to capture this contrast with automatically derived distributional data.4 

 The process of syntactic profiling was carried out in the following way: 

- we hand-selected 100 SCFs among the most frequent syntactic dependency combinations in the 

corpus (abstracting from linear order; i.e. Gianni ha dato il libro a Maria “John gave the book 

to Mary” is considered to be the same dependency pattern as Gianni ha dato a Maria il libro 

“John gave the book to Mary”); 

- for each selected verb v, we computed its joint frequency with each SCF, based on the verb 

dependency patterns automatically extracted form the parsed corpus; 

- verb-SCF frequency was then used to compute the Local Mutual Information (LMI) score 

(Evert 2008), to estimate the statistical salience of the SCF for v. LMI is a variant of the 

Pointwise Mutual Information, to avoid its bias towards overestimating the significance of low 

frequency events. This score is normally used for the study of lexical collocations, and was 

applied here to identify the most prototypical SCFs of a verb. 
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Table 1 reports a sample syntactic profile extracted for the verb arrivare “arrive”. The association 

score highlights the most prominent SCFs for this verb, e.g. the prepositional complement headed 

by a (cf. Gianni è arrivato a casa “John arrived at home), the infinitival clause introduced by the 

same preposition (cf. L’acqua è arrivata a lambire la strada “The water arrived at touching the 

road”), etc. 

@@ Insert Table 1 here 

 

2.2. Semantic profiles 

 

A key aspect of the distributional properties of a verb is represented by the semantic type of the 

lexemes realizing its syntactic slots, i.e. its slot fillers. For instance, both uccidere “kill” and 

mangiare “eat” occur with the transitive SCF SUBJ#OBJ, but the former typically selects for animate 

direct objects, while the latter typically selects for foods. Characterizing the verb combinatorial 

semantic constraints, i.e. its selectional preferences, is notoriously a hard task. Adopting a 

distributional perspective, the selectional preferences of a verb can be obtained through an inductive 

generalization from the prototypical lexical fillers of the verb syntactic slots. This is again an 

instance of the DH illustrated in Section 1. In fact, the similarity between two verbs with respect to 

the semantic constraints in a given syntactic position (e.g., the direct object) can be regarded as a 

function of the similarity of the lexical items that can occur in that position (Erk 2007). 

Consistently with the distributional approach, the semantic profiles extracted for the Italian 

verbs are two-layer structures specifying the following information for each SCF fv of a verb v and 

for each slot s of fv: 

i) the lexical set of s (Hanks 1996, Hanks & Pustejovsky 2005), defined as a set of the 

fillers of s, ranked by their degree of prototypicality. For example, the lexical set of the 

direct object slot of the verb leggere “read” is composed by libro “book”, giornale 

“newspaper”, rivista “magazine”, and so forth; 

ii) (only for noun-selecting slots) the selectional preferences of s, defined as a ranked list of 

the noun semantic classes (e.g. PERSON, ANIMAL, etc.) that best describe the semantic 

types of the fillers of s, i.e. the semantic constraints of s. Currently, the selectional 

preferences have been characterized in terms 24 broad semantic classes, corresponding 

to the so-called “top nodes” dominating the semantic noun taxonomy in the Italian 

section of MultiWordNet (Pianta et al. 2002): ANIMAL, ARTIFACT, ACT, ATTRIBUTE, 

FOOD, COMMUNICATION, KNOWLEDGE, BODY_PART, EVENT, NATURAL_PHENOMENON, 
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SHAPE, GROUP, LOCATION, MOTIVATION, NATURAL_OBJECT, PERSON, PLANT, 

POSSESSION, PROCESS, QUANTITY, FEELING, SUBSTANCE, STATE, TIME. 5 

The frequency of a lexeme occurring in a slot s was used to estimate with LMI  its prototypicality as 

a filler of that slot. Then, the lexical set of s was obtained by selecting only the fillers with LMI 

greater than 0. In turn, nominal lexical sets were used to compute the selectional preferences with 

the following variation of the algorithm described in Schulte im Walde (2006):  

- the co-occurrence frequency of each noun filler of a verb slot s was uniformly divided among 

the different senses assigned to the noun in MultiWordNet; 

- the sense frequency was then propagated up to the semantic hierarchy to the 24 mutually 

exclusive top-nodes, thereby obtaining the joint frequency between s and each of the WordNet 

top-classes.  

- as an element of novelty with respect to Schulte im Walde (2006), we calculated the LMI 

association score between each s and each semantic class. The semantic classes with LMI 

greater than 0 were then selected to represent the selectional preferences of s. 

Table 2 reports a complete semantic profile for the SCF SUBJ#OBJ#COMP-A of comunicare 

“communicate”, with the top part of the lexical sets associated to each frame slot and the semantic 

classes that describe their selectional preferences: 

 

@@ Insert Table 2 here 

 

Distributional semantic profiles have both a descriptive and a predictive function. On the one hand, 

lexical sets provide a sort of “snapshot” of the nouns occurring in a corpus with a verb in a certain 

syntactic position, together with an estimation of their statistical salience. On the other hand, 

selectional preferences represent a way to generalize from these instances to more abstract semantic 

properties of the verb arguments, thereby making predictions about previously unseen slot fillers. 

This information is also useful to compare verbs with respect to their semantic combinatorial 

constraints. For instance, Table 3 reports the verbs in the corpus with the highest association scores 

respectively to the class PERSON and LOCATION as the preferred semantic type selected by the 

prepositional complement introduced by a in the SUBJ#OBJ#COMP-A frame: 

 

@@ Insert Table 3 here 

 

Looking at Table 3, we can notice that, despite their prima facie similarity, the verb mandare 

“send” radically differs from the verbs consegnare “deliver” and inviare “send”, as for the type of 
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the semantic constraints on the COMP-A slot. This is also confirmed by the whole spectrum of 

semantic classes associated with this slot (cf. Table 4). 

 

@@ Insert Table 4 here 

 

Even if the three verbs can be used almost interchangeably in some contexts, these data reveal a 

strong distributional contrast pointing towards major differences in their semantics. From the fact 

that consegnare “deliver” prefers human-like, animate oblique arguments, we can infer that 

delivering implies that there is someone who is able to receive what is delivered. On the other hand, 

mandare “send” does not have such an entailment, and can simply express a displacement of an 

object to another location. Moreover, the near-synonym inviare actually differs from mandare 

because it expresses events whose typical oblique arguments are animate (e.g., persons, institutions, 

etc.), like consegnare. 

Distributional profiles provide us with a very large array of corpus-based information about 

the syntagmatic and semantic constraints to which verbs obey. The profiles built for the Italian 

verbs include the SCFs with which the verbs co-occur, together with the slot fillers and semantic 

types selected by these SCFs. Moreover, simple statistical association scores give an estimation of 

the relative degree of prototypicality of the different bits of information in the profile. It is also 

worth remarking that the information concerning the semantic classes selected by verbs is also fully 

distribution-based. Even if we have assumed a background semantic classification for the nouns, i.e. 

the semantic hierarchy provided by WordNet and the list of its top-nodes, still the association 

between a verb and the classes it selects for is totally data-driven, and grounded on the statistical 

distribution of its noun fillers.6 

 

 

3. From distributional profiles to semantic classes 

 

Computational linguistics research has produced an increasingly large number of methods for the 

automatic induction of verb classes from corpus data (cf. for instance Merlo & Stevenson 2001, 

Lapata & Brew 2004, Schulte im Walde 2006, Joanis et al. 2008, Li & Brew 2008, Sun & 

Korhonen 2009, among many others). Behind the differences, it is possible to identify a common 

approach to the problem of verb classification. First of all, verbs are represented as numerical 

vectors, whose dimensions correspond to a statistical weight derived from the verb joint frequency 

with a certain number of distributional features extracted from corpora with methods similar to 
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those illustrated in Section 2. Computational models differ for the type of distributional features 

adopted, such as the lexical collocates of a verb, SCFs, SFCs enriched with slot fillers and/or 

selectional preferences, or some combination thereof. Secondly, verb classification is usually 

modeled either as a supervised classification task (Merlo & Stevenson 2001, Joanis et al. 2008), or 

as an unsupervised clustering task (Schulte im Walde 2006, Sun & Korhonen 2009), using verb 

vectors as input. Again, a large spectrum of variation arises from the choice of the particular 

clustering or classification algorithm. 

 The state of the art in computational methods for automatic verb induction has achieved 

promising results, which shed light on the predictive power of different types of distributional 

features for verb classification (cf. Korhonen 2009 for a survey). However, the common goal of 

most of these approaches is to find reliable automatic methods to classify verbs, rather than on real 

verb class discovery. Indeed, some form of verb semantic classification is presupposed by all 

existing methods, whose standard approach is to choose a sample of verbs, run a clustering or 

classification algorithm and evaluate the results against a “gold standard” semantic classification. 

Efforts are focused on identifying the feature combination and/or classification algorithm that best 

approximates the a priori classification. Most current work has in fact been carried out on English, 

using Levin Classes as background classification. Its advantages notwithstanding, this is not a 

suitable approach for languages, such as Italian, still lacking a wide-coverage, Levin-style verb 

classification. It is also worth noticing that even for English few attempts at extending Levin 

Classes with corpus data have been carried out in computational linguistics. For instance, Kipper-

Schuler et al. (2008) have extended Levin Classes to cover verbs with sentential complements (not 

included in the original classification), but the new classification has been carried out manually, 

using distributional features (i.e. SCFs) extracted automatically from a corpus. 

 There is also a theoretical reason that makes automatic verb classification still unreliable. 

Most current methods use hard clustering algorithms, which assign verbs to one class only, thereby 

being essentially unable to cope with verb polysemy, and the consequent need for multiple class 

assignments. Moreover, each verb is represented just by one vector recording its global 

distributional history, i.e. all the different contexts in which has been observed in the corpus. The 

major shortcoming of this approach is that different usages of a verb end up being squeezed on the 

same vector. Consequently, it is impossible to capture the fact that alternative distributional patterns 

of a verb may be linked to different meanings and point to different verb classes. Therefore, there is 

a serious risk of oversimplifying the complex interaction between syntactic distributions and the 

semantic features that are relevant for verb classification. 
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 The general conclusion to be drawn is that automatic methods are still substantially 

unreliable to induce a distribution-based verb classification. Semi-automatic approaches similar to 

the one in Kipper-Schuler et al. (2008) are instead more promising: verb distributional profiles are 

first automatically extracted from large corpora and then distributionally coherent verb classes are 

carved from these profiles. In the following section, this method will be illustrated in a small-scale 

case study of Italian verb classification. 

 

3.1. A case study in distribution-based classification of Italian verbs 

 

We are going to present a simple method to build a distribution-based classification of Italian verbs 

semi-automatically, consisting of the following steps: 

- first a specific distributional pattern, in the present case a SCF, is chosen as a “seed” for verb 

selection and classification; 

- then, the verbs in the corpus that have this SCF in their syntactic distributional profile are 

identified; 

- finally, the selected verbs are partitioned into classes taking into account their distributional 

profile, i.e. the other SCFs and selectional preferences. 

For the purpose of this paper, we have chosen as “seed pattern” the SCF SUBJ#OBJ#INF-A, 

corresponding to a frame formed by a subject, a direct object and an infinitival clause introduced by 

the preposition a: 

 

(1)  [SUBJ Gianni] ha costretto [OBJ Maria] [INF-A a partire]. 

  “John forced Mary to leave” 

 

This is a specific and fairly complex construction, which offers an interesting vantage point on the 

interaction between syntactic patterns and meaning dimensions. The Italian verbs extracted from La 

Repubblica Corpus that have this SCF as part of their distributional profile are reported in the 

Appendix. They have been grouped into classes according to similarities in their syntactic and 

semantic distributional profiles. Each class has also been annotated with its most distinctive 

distributional features, that represent a sort of “distributional signature” for the class. The purpose 

of this section is to discuss the criteria behind this proposed classification. 

 The first thing to notice is that there is a small group of verbs that can clearly be set apart 

from the rest of the verb sample. These verbs form a semantically homogenous class, the 

Trascorrere verbs, whose members occur with the SCF SUBJ#OBJ#INF-A, with the OBJ slot selecting 
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for nouns referring to temporal entities or events, e.g. Gianni ha trascorso la giornata / partita a 

leggere “John spent the day / the game reading”. The infinitival clause denotes an event performed 

by the verb subject during the time or situation expressed by the direct object. 

The rest of the sample include verbs whose OBJ slot in the SCF SUBJ#OBJ#INF-A is filled by 

nouns of semantic type PERSON or GROUP, i.e. referring to human or human-like entities (e.g., 

institutions). This set can in turn be carved into various classes, once we consider the other 

distributional patterns of the verbs. For instance, in the Scoraggiare class the SCF SUBJ#OBJ#INF-A 

can be alternatively realized as a SCF with a direct object and a nominal infinitive headed by da, as 

shown by these examples from La Repubblica corpus:7 

 

(2) a. Noi abbiamo sconsigliato [OBJ  Andreotti] [INF-A a proseguire]. 

    “We did  not advise Andreotti to go on” 

b. I leader della DC hanno sconsigliato [OBJ Andreotti] [INF-DA dall' insistere sul  

       decreto]. 

    “The DC leaders did not advise Andreotti to insist on the decree” 

 

The verbs in the Autorizzare class instead alternate the SCF SUBJ#OBJ#INF-A with a SCF with a 

direct object:  

 

(3) a. Gianni ha sollecitato [OBJ Maria] [INF-A a partire]. 

    “John urged Mary to (a) leave” 

b. Gianni ha sollecitato [OBJ la partenza di Maria]. 

    “John urged Mary’s departure”  

 

Notice that there is also a meaning shift between the two variants, with only (3a) entailing that 

Mary was “directly” urged to leave by John. 

 The Consigliare and Convincere classes can instead be distinguished by other frames that 

contribute to shape their “distributional signature”. For instance, with the Consigliare verbs the 

SUBJ#OBJ#INF-A (4a) can be found along with the frame SUBJ#OBJ#INF-DI (4b), and with the frame 

SUBJ#COMP-A#INF-DI (4c), as shown by these examples from La Repubblica: 

 

(4) a. La paura per il terrorismo sta infatti consigliando [OBJ gli americani] [INF-A a  

     restare a casa]. 

    “The fear of terrorism is recommending Americans to stay at home” 



 12 

 b. La prima consiglia [OBJ la Freato] [INF-DI di telefonare]. 

    “The former recommends Ms. Freato to phone” 

c. Un giorno un medico consigliò [COMP-A a Dwight Eisenhower] [...][INF-DI di fare  

      ciclismo]. 

    “On day a physician recommended Dwight Eisenhower to bike” 

 

The Convincere verbs are characterized by the high salience of the frames SUBJ#OBJ#FIN-CHE (5b) 

(including a direct object slot and a finite sentential complement introduced by che) and 

SUBJ#OBJ#COMP-DI (5c), that alternate with the SUBJ#OBJ#INF-A frame (5a). These verbs instead 

cannot occur neither with the frame SUBJ#OBJ#INF-DI nor with SUBJ#COMP-A#INF-DI, differently 

from the Consigliare verbs (5d-e): 

 

(5) a. Il terrorista convinse [OBJ la fidanzata] [INF-A a salire sull' aereo di El Al]. 

    “The terrorist convinced his fiancé to board on the El Al flight” 

b. Il grande sforzo adesso è convincere [OBJ gli italiani] [FIN-CHE che la partita di  

     domani a Bari è importante]. 

    “The big effort now is to convince Italians that the match in Bari tomorrow is  

     important” 

c. Il neo-capogabinetto ha convinto [OBJ Reagan] [COMP-DI dell'impossibilità di  

     confermare l' incarico a Gates]. 

    “The new chief of staff convinced Reagan of the impossibility to confirm Gates’ 

     appointment” 

d. *Gianni ha convinto [OBJ Maria] [INF-DI di visitare questo museo]. 

  “John convinced Mary to visit this museum” 

e. *Gianni ha convinto [COMP-A a Maria] [INF-DI di visitare questo museo]. 

  “John convinced (*to) Mary to visit this museum” 

 

In the Consigliare and Convincere classes the frame SUBJ#OBJ#INF-A is more marginal and 

marked than the other frames. Conversely, for the Costringere verbs, the class that encompasses the 

largest subset of the verbs selecting for SUBJ#OBJ#INF-A, this represents the most salient SCF. The 

verbs belonging to this large class are semantically similar to those in the Indurre and Spingere 

classes, for which the SUBJ#OBJ#INF-A SCF is also highly prototypical. The similarities are so close 

that we might even lump these three classes together. However, there is further distributional 

evidence supporting the decision of keeping them apart. For instance, the Spingere class is also 
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characterized by the frame SUBJ#OBJ#COMP-CONTRO, suggesting that these verbs express the idea of 

prompting somebody to act against somebody else. Some verb assignments are however not 

absolutely clear, consistently with the fact that the precise boundaries among these classes are hard 

to pin down. This is the case of a highly polysemous verb like spingere “push”, which should 

presumably be assigned to more than one class. Indeed, the draft classification proposed in the 

Appendix as a flat list is an oversimplification. More realistically, semantic classes should have a 

multi-layered organization, with verbs potentially belonging to more than one class (cf. Levin 

1993). 

The classes that have been carved from the distributional verb profiles also greatly differ 

with respect to the semantic properties they share. Some classes, e.g. Convincere or Autorizzare, 

seem to be internally very coherent (with several near-synonym verbs), while others, for instance 

the Costringere class, present a higher degree of internal variation. A precise semantic 

characterization of these classes exceeds the limits of the present paper, but we can formulate some 

hypotheses about their meaning similarities. For instance, the semantic core of the Costringere class 

can be captured by assuming that their prominent SCF SUBJ#OBJ#INF-A is associated with a very 

complex “meaning component”, which can roughly be represented with the following “event 

structure template” (cf. Rappaport Hovav & Levin 1998): a Person X<SUBJ> ACTS<p> on a Person 

Y<OBJ> with the purpose that Y perfoms an act Z<INF-A>. This is indeed a general event schema 

interacting with other meaning components. For instance, verbs differ for the type of action that the 

subject performs on the object (formalized with the parameter <p> in the event structure template). 

This can be a coercive action (costringere “oblige”) or a supportive one (aiutare “help”), within a 

much wider spectrum of possibilities. We can therefore model such a contrast by dividing the verb 

meaning into an event structure component – shared by a whole class of verbs - and a verb-specific 

root component, as proposed by Rappaport Hovav & Levin (1998). Another source of variation 

among verbs is represented by the statistical salience of the specific meaning component associated 

with the SCF SUBJ#OBJ#INF-A, possibly correlated with the relative prototypicality of this frame. In 

some verbs, this is the central (or dominant) aspect of meaning (e.g., costringere “oblige”, invitare 

“invite”, spingere “push”, etc.). In some other verbs, this meaning component “competes” and/or 

interacts with other meaning components (cf. consigliare “recommend”, convincere “convince”, 

mandare “send”, etc.). For instance, convincere has both a propositional interpretation, i.e. you act 

on somebody to make him/her believe that a certain state of affairs holds true, and an action 

interpretation, i.e. you act on somebody to make him/her perform some action. These interpretations 

are associated respectively with the SUBJ#OBJ#FIN-CHE and the SUBJ#OBJ#INF-A frames. The 

understanding of the complex relationships between different meaning components, together with 
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their distributional correlates, can indeed contribute to a better understanding of verb polysemy and 

its consequences for semantic verb classification. 

 

 

4. Conclusions 

 

In this paper, we have argued for the distributional approach as the correct method to pursue the 

goal of designing an empirically well-grounded semantic verb classification. We have also shown 

that the state of the art in computational linguistics can be used to turn this approach into an 

operative framework to build distributional profiles of verbs, representing the linguistic material 

from which verb classes can be carved. The small-scale experiment on Italian verbs goes exactly 

towards this direction. Now, we would like to conclude by raising some questions about the goal 

itself from which we have started, i.e. semantic verb classes. We will do this by reporting a quote 

from Levin (1993:17-18) that is too often overlooked in the literature on verb classification: 

 

The verb classes that are identified in this book should be “handled with care”, since there is a 

sense in which the notion of “verb class” is an artificial construct. [...] The important 

theoretical construct is the notion of meaning component, not the notion of verb class. 

 

Much work in computational linguistics and in lexical semantics has actually focused on the search 

for the best way to build classification schemes for verb meanings. However, there is a concrete risk 

that these efforts are actually missing the right goal. We have no doubt that verbs can be grouped 

into classes, since almost everything can be classified. The crucial issue are the features that we use 

to characterize the similarities among verbs supporting the classification. This is indeed the real 

missing aspect in the current research on verb classification: in fact, there is still little understanding 

of the meaning components, i.e. the semantic features, relevant to analyze verb meaning.8 The 

distributional methodology - applied in this paper to Italian verbs - should therefore be used to 

address this specific goal, which is a necessary precondition for verb classification. Crucial 

improvements in this research can in fact be achieved only by reaching a better understanding of the 

complex interaction between the distributional patterns of verbs and the dimensions that govern 

their semantic space. 
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Appendix - Verb classes 
 
Costringere verbs 
costringere “force”, invitare “invite”, aiutare “help”, obbligare “oblige”, condannare “condemn”, 
chiamare “ask”, abituare “get used”, sfidare “challenge”, educare “educate”, forzare “force”, 
vincolare “bind”, addestrare “train”, richiamare “recall”, designare “designate”, pungolare 
“goad”, rieducare “re-educate”, allettare “tempt”, istruire “train”, incalzare “ply”, predestinare 
“predestinate”, sferzare “incite”, sguinzagliare “unleash”, deputare “delegate” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- these verbs also typically occur with the SCF SUBJ#OBJ#COMP-A, with the OBJ slot selecting for 

the semantic classes PERSON or GROUP, and the COMP-A slot selecting for the semantic class 
ACT. 

 
 
 
Indurre verbs 
indurre “induce”, esortare “exhort”, invogliare “entice”, stimolare “stimulate”, spronare “goad”, 
orientare “direct”, motivare “motivate” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP. 
- these verbs also typically occur with the SCF SUBJ#OBJ#COMP-A, with the OBJ slot selecting for 

the semantic classes PERSON or GROUP, and the COMP-A slot selecting for the semantic class 
ACT; 

- these verbs also typically occur with the SCF SUBJ#OBJ#COMP-VERSO. 
 
 
 
Spingere - verbs 
spingere “push”, istigare “instigate”, sospingere “incite”, aizzare “incite”, sensibilizzare 
“sensitize” incitare “encourage” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- these verbs also typically occur with the SCFs SUBJ#OBJ#COMP-CONTRO, SUBJ#OBJ#COMP-

VERSO, and SUBJ#OBJ#COMP-A. 
 
 
 
Consigliare - verbs 
consigliare “recommend”, ammonire “admonish”, implorare “implore”, supplicare “beg” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- these verbs also typically occur with the SCF SUBJ#OBJ#INF-DI, with the OBJ slot selecting for 

the semantic classes PERSON or GROUP; 
- these verbs also typically occur with the SCF SUBJ#COMP-A#INF-DI, with the COMP-A slot 

selecting for the semantic classes PERSON or GROUP. 
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Convincere – verbs 
convincere “convince”, persuadere “persuade” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- these verbs also typically occur with the SCF SUBJ#OBJ#FIN-CHE, with the OBJ slot selecting 

for the semantic classes PERSON or GROUP; 
- these verbs also typically occur with the SCF SUBJ#COMP-DI (es. Gianni persuase Maria della 

necessità di partire “John persuaded Mary about the necessity to leave”) 
 
 
 
Autorizzare verbs 
autorizzare “authorize”, sollecitare “urge”, incoraggiare “encourage”, delegare “delegate”, 
incentivare “stimolate”, abilitare “qualify”, legittimare “legitimate” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- this SCF alternates also with the SCF SUBJ#OBJ, selecting for the semantic classes ACT or 

EVENT: 
a. Gianni ha autorizzato Maria a partire. 

“John authorized Mary to leave” 
b. Gianni ha autorizzato la partenza di Maria 

“John authorized Mary’s departure” 
 
 
 
Scoraggiare - verbs 
scoraggiare “discourage”, diffidare “caution”, dissuadere “dissuade”, sconsigliare “not advise”, 
disincentivare discourage 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- this SCF alternates also with the SCF SUBJ#OBJ#INF-DA, with the OBJ slot selecting for the 

semantic classes PERSON or GROUP, and the nominal infinitive: 
a. Gianni ha dissuaso Maria a partire. 

“John dissuaded Mary to leave” 
b. Gianni ha dissuaso Maria dal partire 

“John dissuaded Mary from leaving” 
 
 
 
Portare - verbs 
portare “bring”, destinare “destinate”, mandare “send”, condurre  “lead”, spedire “send”, inviare 
“send” 
 
- the OBJ slot of the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes PERSON or 

GROUP; 
- the prototypical frame of these verbs is SUBJ#OBJ#COMP-A, with the OBJ slot selecting for the 
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semantic class ARTIFACT. 
 
 
 
Trascorrere - verbs 
trascorrere “pass”, destinare “destinate”, impegnare “commit”, cominciare “begin”, passare 
“pass”, impiegare “commit”, dedicare “devote”, iniziare “begin” 
 
- the OBJ slot of the SCF the SCF SUBJ#OBJ#INF-A typically selects for the semantic classes 

TIME, QUANTITY, or ACT. 
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SCF LMI 

SUBJ#COMP-A 104576.9044 
SUBJ#0 66490.9049 
SUBJ#COMP-DA 19680.8153 
SUBJ#COMP-IN 17210.9291 
SUBJ#SI#COMP-A 11577.3732 
SUBJ#INF-A 9698.6682 
SUBJ#COMP-CON 6963.6801 
SUBJ#COMP-SU 3369.7406 
SUBJ#COMP-A#COMP-DA 3115.0470 
SUBJ#COMP-ATTRAVERSO 627.2822 
SUBJ#SI#INF-A 507.2676 

Table 1 – Syntactic profile for the verb arrivare “arrive” 
 
 

Frame slots Lexical sets Selectional preferences 
SUBJECT presidente “president”, segretario “secretary”, 

governo “government” proprietario “owner”, 
datore “employer”, medico “doctor”, banca 
“bank”, giornalista, “journalist”, etc. 

PERSON 
GROUP 

OBJECT decisione “decision”, notizia “news”, 
intenzione “intention”, nome “name”, 
variazione “variation”, esito “result”, 
disponibilità “availability”, esistenza 
“existence”, risultato “result”, informazione 
“information”, emozione “emotion”, numero 
“number”, senso “sense”, dimissione 
“dismissal”, etc. 

KNOWLEDGE 
ACT 
FEELING 
ATTRIBUTE 
COMMUNICATION 
STATE 
EVENT 
PROCESS 

COMP-A autorità “authority”, stampa “press”, pubblico 
“public”, lettore “reader”, ministero “ministry”, 
presidente “president”, fisco “tax office”, 
datore “employer”, cliente “customer”, 
sindacato “trade union”, mercato “market”, etc. 

PERSON 
GROUP 

Table 2 – distributional profile for the SCF SUBJ#OBJ#COMP-A for comunicare “communicate” 
 
 

COMP-A.PERSON COMP-A.LOCATION 
chiedere “ask” mettere “put” 
dare “give” rimettere “restore” 
affidare “entrust” portare “carry” 
offrire “offer” vedere “see” 
consegnare “deliver” colare “sink” 
inviare “send” buttare “trash” 
dire “say” collocare “place” 
raccontare “tell” mandare “send” 
rivolgere “turn” trovare “find” 
concedere “concede” accompagnare “place” 



 21 

Table 3 –verbs with the highest LMI for the classes PERSON and LOCATION as semantic types of the 
COMP-A slot in the SUBJ#OBJ#COMP-A frame 

 
 
 

consegnare 
“deliver” LMI mandare  

“send” LMI inviare  
“send” LMI 

PERSON 6151.0897 GROUP 3825.7046 PERSON 3671.0614 
GROUP 757.5376 NATURAL_OBJECT 431.5340 GROUP 924.1328 
  LOCATION 358.5839 LOCATION 7.607 
  PERSON 311.2284   

Table 4 – semantic preferences of the COMP-A slot in the SUBJ#OBJ#COMP-A frame of consegnare 
“deliver”, mandare “send”, and inviare “send” 
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* I am very grateful to Gabriella Lapesa for her precious help in carrying out the LexIt project. I also thank the two 
anonymous reviewers for their helpful comments. The usual disclaimers apply. 
1 Hence, the need for some sort of unification. The Unified Verb Index (http://verbs.colorado.edu/verb-
index) is the first attempt at linking the major semantic classifications for English verbs. 
2 This definition comes from the FrameNet website: http://framenet.icsi.berkeley.edu/ 
3 The extraction of distributional profiles has been carried out in collaboration with Gabriella Lapesa. 
4 See Merlo & Esteve Ferrer (2006) for a contribution in this direction. 
5 The issue of identifying the proper granularity of the noun semantic classes that best describe verb selectional 
preferences is still open, and has always been at the center of the debate in computational linguistics. Surely, these 24 
classes are too broad to represent more subtle differences in verb semantic constraints. The work to extend the 
algorithm presented in this paper to a larger number of semantic classes is currently ongoing. 
6 The verb distributional profiles extracted from La Repubblica are freely accessible at this web site: 
http://sesia.humnet.unipi.it/lexit 
7 Interestingly, sconsigliare also occurs in the same corpus with the SUBJ#OBJ#INF-DI frame. The following example is 
almost a paraphrase of (2a): 
 
(i) I socialisti sconsigliano [OBJ Andreotti] [INF-DI di proseguire nel tentativo]. 
 “The socialist do not advise Andreotti to go on with his attempt” 
 
8 This point is also shared by Čulo et al. (2008), but they do not focus on the relationship between meaning features and 
verb distributional  properties. 


